Plants use a process called photosynthesis to make food. During photosynthesis, plants trap light energy with their leaves. Plants use the energy of the sun to change water and carbon dioxide into a sugar called glucose. Glucose is used by plants for energy and to make other substances like cellulose and starch.
Explanation:
Since HF is a weak acid, the use of an ICE table is required to find the pH. The question gives us the concentration of the HF.
HF+H2O⇌H3O++F−HF+H2O⇌H3O++F−
Initial0.3 M-0 M0 MChange- X-+ X+XEquilibrium0.3 - X-X MX M
Writing the information from the ICE Table in Equation form yields
6.6×10−4=x20.3−x6.6×10−4=x20.3−x
Manipulating the equation to get everything on one side yields
0=x2+6.6×10−4x−1.98×10−40=x2+6.6×10−4x−1.98×10−4
Now this information is plugged into the quadratic formula to give
x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−√2x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)2
The quadratic formula yields that x=0.013745 and x=-0.014405
However we can rule out x=-0.014405 because there cannot be negative concentrations. Therefore to get the pH we plug the concentration of H3O+ into the equation pH=-log(0.013745) and get pH=1.86
Given:
175 kilograms of Methane (CH4) to be synthesized into Hydrogen Cyanide (HCN)
The balanced chemical equation is shown below:
2 CH4<span> + 2 NH</span>3<span> + 3 O</span>2<span> → 2 HCN + 6 H</span>2<span>O
</span>
To calculate for the masses of ammonia and oxygen needed, our basis will be 175 kg CH4.
Molar mass:
CH4 = 16 kg/kmol
NH3 = 17 kg/kmol
O2 = 32 kg/kmol
mass of NH3 = 175 kg CH4 / 16 kg/kmol * (2/2) * 17 kg/kmol
mass of NH3 = 185.94 kg NH3 needed
mass of O2 = 175 kg CH4 / 16 kg/kmol * (3/2) * 32 kg/kmol
mass of O2 = 525 kg
mass of O = 525 kg / 32 kg/kmol * (1/2) * 16 kg/kmol
mass of O = 131.25 kg O
102kg/hr * 1000g/hr * 1lb/453.6g * 24hr/day = 5404.0 lb/day