Answer:
B- Sodium loses an electron.
D- Fluorine gains an electron.
Sodium is oxidized.
Explanation:
The reaction equation is given as:
Na + F → NaF
In this reaction, Na is the reducing agent. It loses an electron and then becomes oxidized. By so doing, Na becomes isoelectronic with Neon.
Fluorine gains the electron and then becomes reduced. This makes fluorine also isoelectronic with Neon.
This separation of charges on the two species leads to an electrostatic attraction which forms the ionic bonds.
Answer:
See explanation
Explanation:
A titration involves the addition of a titrant to an analyte solution. It is a method of volumetric analysis.
When a particular volume of titrant is added, the colour changes to signal the end point of the reaction.
The point at which the colour changes is called the equivalence point. This is the point at which the amount of titrant added is just enough to completely neutralize the analyte solution.
Hence the volume NaOH that needs to be added to the beaker containing HCl to cause a colour change is the volume of NaOH that is just enough to completely neutralize the HCl solution.
Answer:
0.125 mg
Explanation:
<em>The correct answer would be 0.125 mg</em>
<u>According to the conversion factor, one milligram of a sample is equivalent to one thousand micrograms of the same sample.</u>
milligram = 
microgram = 
Hence,
1 milligram = 1000 micrograms or 1 microgram =
milligram
Therefore, 125 micrograms will be:
125/1000 = 0.125 milligram
Part 1 : Answer is only B substance is soluble in water.
In this experiment undissolved mass of each substance was measured. According to the given data, undissolved mass of substance B at 20 °C is 10 g while A is 50 g. Since, the initial added mass of each substance is 50 g, we can see that substance A is not soluble in water since the undissolved mass is 50 g.
Part 2 : Substance A is not soluble in water and substance B is soluble in water.
According to the given data, the undissolved mass of substance A remains as same as initial added mass, 50 g throughout the temperature range from 20 ° to 80 °C. Hence, we can conclude that substance A is not soluble in water.
But, according to the data, undissolved mass of substance B at 20 °C is 10 g. That means, 40 g of substance B was dissolved in water. When the temperature increases the undissolved mass of substance B decreases. Hence, we can conclude that substance B is soluble in water and solubility increases with temperature.