Answer:
Balance molecular equation:
K2CO3(aq) + Sr(NO3)2(aq) → SrCO3(s) + 2KNO3(aq)
Net ionic equation:
CO3∧-2(aq) + Sr∧+2(aq) → SrCO3(s)
Explanation:
Potassium carbonate = K2CO3
Strontium nitrate = Sr(NO3)2
Chemical equation:
K2CO3 + Sr(NO3)2 → SrCO3 + KNO3
Balance chemical equation with physical states:
K2CO3(aq) + Sr(NO3)2(aq) → SrCO3(s) + 2KNO3(aq)
Ionic equation:
2K+(aq) + CO3∧-2(aq) + Sr∧+2(aq) + 2NO∧-3(aq) → SrCO3(s) + 2K+(aq) + 2NO∧-3(aq)
Net ionic equation:
CO3∧-2(aq) + Sr∧+2(aq) → SrCO3(s)
2K+ and 2NO∧-3 ions are spectator ions that's way these are not written in net ionic equation.
Spectator ions:
These are the ions that are present same on both side of chemical reaction and does not effect the equilibrium.
Answer:
b Fuel for fusion reactors can be extracted from ocean water.
Explanation:
The fuel is deuterium, which makes up 0.02% of the hydrogen atoms in water. The oceans contain more than a billion cubic kilometres of water, so that's a lot of deuterium.
a is wrong. The fuel for fusion reactors is deuterium.
c is wrong. There is much research, but there are no large-scale fusion reactors in operation.
d is wrong. Fusion reactors do not produce radioactive waste as spent fuel. Most of the radioactive waste would be the reactor core itself.
Answer:
a television
Explanation:
A television utilizes plasma in its plasma display screen.
Answer:
iron atoms
Explanation:
According to avogadro's law, 1 mole of every substance weighs equal to the molecular mass and contains avogadro's number
of particles.
contains= 2 atoms of iron
contains=
atoms of iron
thus 0.32 moles of
contains=
atoms of iron
Thus the sample would have
iron atoms.
Answer:
see explanation
Explanation:
The reaction has a negative rate law; i.e., Rate = - ΔConcentration / ΔTime which is graphically a negative slope for the plot of Rate as a function of reactant concentration. => Rate ∝ f(Reactant Concentration). However, by raising the temperature, an increase the probability of reaction occurs and the formation of more product.