Answer:
102.26 moles of helium were required to Fill the Goodyear Blimp
Explanation:
To solve this question we need to use combined gas law:
PV = nRT
<em>Where P is pressure, V is volume of gas (2500L), n are moles of gas (Our incognite), R is gas constant (0.082atmL/molK) and T is absolute temperature</em>
<em />
Assuming atmospheric condition we can write P = 1atm and T = 25°C = 298.15K
Replacing:
PV/RT = n
1atm*2500L / 0.082atmL/molK*298.15K = n
<h3>102.26 moles of helium were required to Fill the Goodyear Blimp</h3>
<em />
An ionic compound can be formed through the existence of valency above the compound e.g NH4 which have +3 as it's ionic charge
One of the best buffer choice for pH = 8.0 is Tris with Ka value of 6.3 x 10^-9.
To support this answer, we first calculate for the pKa value as the negative logarithm of the Ka value:
pKa = -log Ka
For Tris, which is an abbreviation for 2-Amino-2-hydroxymethyl-propane-1,3 -diol and has a Ka value of 6.3 x 10^-9, the pKa is
pKa = -log Ka
= -log (6.3x10^-9)
= 8.2
We know that buffers work best when pH is equal to pKa:
pKa = 8.2 = pH
Therefore Tris would be a best buffer at pH = 8.0.