Volume of 1 mol of gas at standard temperature and pressure is 22.4 L.
That is using ideal gas equation:
PV = nRT
P=pressure
V=volume
n=number of moles
R=gas constant
T=temperature
at STP,
P=1 atm
T=273K
n=1(given)
Putting all the values in the equation will give,
V= 22.4 L
So, the answer is :
The volume of 1 mol of gas at standard temperature and pressure is 22.4 L.
Freidal craft reaction is the attack of a carbon or carbon chain on aromatic ring with the help of anhydrous AlCl3 to produce alkylated benzene ring.
Only ketone not be able to undergo friedal craft reaction as, it is not aromatic compound whereas all the given reactants are aromatic and gives friedal craft reaction.
The energy of the photon from the calculation performed is 3.5 * 10^-16 J.
<h3>What is a photon?</h3>
A photon is a packet of light. It was derived from the theory of Albert Einstein. The energy of a photon is obtained from; E = hc/λ
- h= Plank's constant
- c = speed of light
- λ = wavelength
Now we have that;
E = 6.6 * 10^-34 * 3 * 10^8/562 * 10^-9
E = 3.5 * 10^-16 J
Missing parts:
Calculate the energy, in joules, of a photon of green light having a wavelength of 562nm?
Learn more about energy of photon:brainly.com/question/20912241
#SPJ1
Answer: 6
Explanation:
1) The structure shown is:
3CH₃CH₂O
2) The molecule is CH₃CH₂O. The chemical formula is CH₃CH₂O. The subscripts indicate the number of atoms of the corresponding atom in each molecule.
Then, there are 1 + 1 = 2 atoms of C, 3+ 2 = 5 atoms of H, and 1 atom of O.
3) The number in front of the molecule is the coefficient. It is 3, and it tells the number of molecules.
So, there are 3 molecules, which means that you have 3 times a many atoms as calculated previously.
That is 3×2 = 6 atoms of C, 3 × 5 = 15 atoms of H, and 3 × 1 = 3 atoms of O.
Then, the number of atoms of carbon (C) in 3 molecules is 6