0.33 seconds is the period of a wave with a frequency of 3 Hz and an amplitude off 0.01 .
<u>Explanation:</u>
We have , period of a wave with a frequency of 3 Hz and an amplitude off 0.01 . We know that period of a wave is amount of time needed to complete one oscillation . In order to calculate period of wave we use frequency and the formula use is
. We are given that frequency = 3 Hz:

⇒ 
⇒ 
⇒ 
Therefore, 0.33 seconds is the period of a wave with a frequency of 3 Hz and an amplitude off 0.01 .
Answer:
what? that's 66 total, 6 more elliptical machines, a 1 to 1.2 ratio
but I don't know what else you would mean
Answer:
0.0055 mol of N2O5 will remay after 7 min.
Explanation:
The reaction follows a first-order.
Let the concentration of N2O5 after 7 min be y
Rate = Ky = change in concentration of N2O5/time
K is rate constant = 6.82×10^-3 s^-1
Initial concentration of N2O5 = number of moles/volume = 2.1×10^-2/1.8 = 0.0117 M
Change in concentration = 0.0117 - y
Time = 7 min = 7×60 = 420 s
6.82×10^-3y = 0.0117 - y/420
0.0117 - y = 420×6.82×10^-3y
0.0117 - y = 2.8644y
0.0117 = 2.8644y + y
0.0117 = 3.8644y
y = 0.0117/3.8644 = 0.00303 M
Number of moles of N2O5 left = y × volume = 0.00303 × 1.8 = 0.0055 mol (to 2 significant digits)
Answer:
A, option is the correct answer of this question
Answer:
4.21
Explanation:
use Avogadro's number
6.023 x 10^23
multiply this by 7 because you want to find 7 moles :
6.023 x 10^23 x 7 = 4.21