Answer: 0.0826mol
PV=nRT
n=PV/RT
n=(1atm)(2.1L)/(310K)(0.082057L*atm/mol*K)=0.0826mol
Answer:
30.4 g. NH3
Explanation:
This problem tells us that the hydrogen (H2) is the limiting reactant, as there is "an excess of nitrogen." Using stoichiometry (the relationship between the various species of the equation), we can see that for every 3 moles of H2 consumed, 2 moles of NH3 are produced.
But before we can use that relationship to find the number of grams of ammonia produced, we need to convert the given grams of hydrogen into moles:
5.4 g x [1 mol H2/(1.008x2 g.)] = 2.67857 mol H2 (not using significant figures yet; want to be as accurate as possible)
Now, we can use the relationship between H2 and NH3.
2.67857 mol H2 x (2 mol NH3/3 mol H2) = 1.7857 mol NH3
Now, we have the number of moles of ammonia produced, but the answer asks us for grams. Use the molar mass of ammonia to convert.
1.7857 mol NH3 x 17.034 g. NH3/mol NH3 = 30.4 g. NH3 (used a default # of 3 sig figs)
Answer:
Mass = 2.77 g
Explanation:
Given data:
Mass of HCl = 2 g
Mass of CaCl₂ produced = ?
Solution:
Chemical equation:
2HCl + Ca → CaCl₂ + H₂
Number of moles of HCl:
Number of moles = mass / molar mass
Number of moles = 2 g/ 36.5 g/mol
Number of moles = 0.05 mol
now we will compare the moles of HCl with CaCl₂.
HCl : CaCl₂
2 : 1
0.05 : 1/2×0.05 = 0.025 mol
Mass of CaCl₂:
Mass = number of moles × molar mass
Mass = 0.025 mol × 110.98 g/mol
Mass = 2.77 g
So to solve this you need to know Charles’s law which is: V1/T1=V2/T2. Where T1 and V1 is the initial volume and Temperature and V2 and T2 is the temperature and volume afterwards. So first plug in the numbers you are given. V1= 1.55L T1= 32C° V2= 755mL T2=?. Since your volumes are two different units you change 755mL to be in L so that would be 0.755 L. And since your temp isn’t in Kelvin you do 273+32= 305K°. You then would rearrange your equation to solve for T2 which is V2T1/V1. Then you plug in your numbers (0.755L)(305K)/1.55L. Then you solve and would be 148.5645161 —> 1.49 x 10^2 K