Answer:
If an object is moving with a constant velocity, then by definition it has zero acceleration. So there is no net force acting on the object. The total work done on the object is thus 0 (that's not to say that there isn't work done by individual forces on the object, but the sum is 0 ).
Explanation:
In the middle, when the object was changing position at a constant velocity, the acceleration was 0. This is because the object is no longer changing its velocity and is moving at a constant rate.
Answer:
static coefficient = 0,203 & kinetic coefficient = 0,14
Explanation:
There are two (2) conditions, when the desk is about to move and when the desk is moving. In the attachements you can see the two free body diagram for each condition.
In the first condition, there is no movement and the force is 12 N, in the image we can see the total forces are equal to 0 and by the definition of the friction force we can get the static friction coefficient.
In the second condition there is movement in the direction of the force which is equal to 8 N, again by the definition of the friction force we can get the kinetic friction coefficient. Since the desk is moving with constant velocity there is not acceleration.
Putting together two distinct 50 dB sound, do not create a 100 dB sound. Since decibels are logarithm of energy, creating two sounds together only makes the energy increase but the logarithm only goes up by somehow little. So increasing the sound by 10 dB, only makes it 10000 times louder because each 10 dB increase in sound makes the sound 10 times louder.
Twice as loud is an increase of 10Log (2) = 3.01 dB. So, 53,01 dB is twice as loud as 50dB.