Answer:

Step-by-step explanation:
Two lines are given to us which are perpendicular to each other and we need to find out the value of a . The given equations are ,
Step 1 : <u>Conver</u><u>t</u><u> </u><u>the </u><u>equations</u><u> in</u><u> </u><u>slope</u><u> intercept</u><u> form</u><u> </u><u>of</u><u> the</u><u> line</u><u> </u><u>.</u>
and ,
Step 2: <u>Find </u><u>the</u><u> </u><u>slope</u><u> of</u><u> the</u><u> </u><u>lines </u><u>:</u><u>-</u>
Now we know that the product of slope of two perpendicular lines is -1. Therefore , from Slope Intercept Form of the line we can say that the slope of first line is ,
And the slope of the second line is ,
Step 3: <u>Multiply</u><u> </u><u>the </u><u>slopes </u><u>:</u><u>-</u><u> </u>
Multiply ,
Multiply both sides by a ,
Divide both sides by -1 ,
<u>Hence </u><u>the</u><u> </u><u>value</u><u> of</u><u> a</u><u> </u><u>is </u><u>9</u><u> </u><u>.</u>
Answer: maximum height of the football = 176 feet
Step-by-step explanation:
We want to determine the maximum height of the football from the ground. From the function given,
h(t) = -16t^2+96t +32, it is a quadratic function. Plotting graph if h will result to a parabolic shape. The maximum height of the football = the vertex of the parabola. This vertex is located at time, t
t = -b/2a
b = 96 and a= -16
t = -b/2a = -96/2×-16= 3
Substituting t = 3 into the function if h
h(t) = -16×3^2+96×3 +32
=-16×9 + 96×3 +32
= -144+ 288+32
=176 feet
50 * 3 = 150 and 150 * 3 = 450
So the answer is b 150
Answer:
One-fourth n + 8 = 16
Step-by-step explanation:
basically 1/4n +8=16
Answer:
i can't see the picture can you writen and and I promise that I will solve it as quickly as possible
Step-by-step explanation: