Answer:
The third one from the left–the graduated cylinder.
Explanation:
The laboratory apparatus that gives an <em>"accurate" </em>or <em>"precise" </em>measurement of a liquid's volume is the<em> graduated cylinder</em>. All you have to do is to pour the liquid into the cylinder and read its measurement using the calibrated scale.
The graduated cylinder comes in different sizes, which means the scale divisions will depend on its size. When reading the measurement, it is important to take note to read at the <u><em>bottom of the meniscus</em></u> because it gives the most accurate volume.
Answer : The mass of chlorine reacted with the phosphorus is, 53.25 grams.
Explanation :
First we have to calculate the moles of phosphorus.


Now we have to calculate the moles of 
The balanced chemical reaction is:

From the balanced chemical reaction, we conclude that
As, 2 moles of phosphorous react with 3 moles of 
So, 0.5 moles of phosphorous react with
moles of 
Now we have to calculate the mass of 

Molar mass of
= 71 g/mol

Therefore, the mass of chlorine reacted with the phosphorus is, 53.25 grams.
Answer:5.309 × 10²⁴ atoms.
Explanation:
Given that
molar mass of NH3 = 17
g/mol
Mass of NH3 = 5g
Therefore, No of moles of NH3 = Mass/ molar mass
= 5g/ 17g/mol
= 0.294 moles.
I mole = 6.02 × 10²³ atoms
Therefore the number of hydrogen atoms in a 0.294 moles of ammonia gives us
0.294× 6.02 × 10²³ × 3 ( since there are 3 hydrogens in Ammonia )
= 5.309 × 10²⁴ atoms.
The atomic theory is the scientific theory that matter is composed of particles called atoms. Atomic theory traces its origins to an ancient philosophical tradition known as atomism.
Answer:
Most common oxidation state of the chalcogens is -2, most common oxidation state of the halogens is -1.
Explanation:
For atomic radii, the chalcogens have a larger atomic radii than the halogens
This is because atomic radii decreases across the period due to increase in nuclear charge.
For ionic radii the chalcogens also have larger ionic radii than the halogens. This is because the chalcogens always carry a -2 charge compared to halogens that carry a -1 charge. Since -2 is the most common oxidation state for chalcogens and -1 is the most common oxidation state for the halogens.
In terms of oxidation states, the halogens show a higher value of common oxidation state -1 while for chalcogens is -2 even though +2, +4 and +6 oxidation states are also well known.
First ionization energy of halogens is greater than that of the chalcogens due to greater effective nuclear charge.
The second ionization energy of chalcogens is greater than that of the halogens.