Answer:
mass of the meter stick=0.063 kg
or
mass of the meter stick=63.3 g
Explanation:
Given data
m₁=41.0g=0.041kg
r₁=(39.2 - 23)cm
r₂=(49.7 - 39.2)cm
g=9.8 m/s²
To find
m₂(mass of the meter stick)
Solution
The clockwise and counter-clockwise torques must be equal if the meter stick is in rotational equilibrium

Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)
Answer:
From shortest wavelength to longest wavelength:
Gamma Rays
X-Rays
Ultraviolet
Visible Light
Infrared waves
Microwaves
Radio Waves
Explanation:
Answer:
Maybe to get different readings
Answer:
I think number 3
Explanation:
Or it’s 1 but you just discover stuff in science and don’t argue much so I think it’s number 3, hope this helps, give me A brainliest please. Thanks