To determine the amount in grams of the iron, we need data on the density of iron. From literature, it has a value of <span>p=7.9 g/cm3. We simply multiply the volume to the density. We do as follows:
mass = 3.70 (7.9) = 29.23 g Fe
Hope this answers the question. Have a nice day.</span>
Answer:
You're four sentences should include about how the roller coaster has the most potential energy at the top of the track, and the opposing energy, "kinetic" has the most kinetic energy when going down the hill.
Explanation:
Kinetic - In-Motion.
Potential - Gathering Energy to go into Motion.
( I'll try to answer questions to clear up confusion. )
Answer:
i. 6.923 V
ii. The e.m.f. = 22.5 V
Explanation:
i. The given parameters are;
Length of potentiometer = 1 m
The resistance of the potentiometer = 10 Ω
The e. m. f. of the attached cell = 9 V
The current, I flowing in the circuit = e. m. f/(Total resistance)
The current, I flowing in the circuit = 9 V/(10 + 3) = 9/13 A
The potential difference, p.d. across the 1 m potentiometer wire = I × Resistance of the potentiometer wire
The p.d. across the potentiometer wire = 9/13×10 = 90/13 = 6.923 V
ii) Given that the 1 m potentiometer wire has a resistance of 10 Ω, 75 cm which is 0.75 m will have an e.m.f. given by the following relation;

Where:
E = e.m.f. of the balance point cell
= Resistance of 75 cm of potentiometer wire = 0.75×10 = 7.5 Ω
= Resistance of the cell in the circuit = 3 Ω
V = e.m.f. attached cell = 9 V

E = 7.5*3 = 22.5 V
The e.m.f. = 22.5 V
Answer:
Option E is correct.
Time the ball remains in the air before striking the ground is closest to 3.64 s
Explanation:
yբ = yᵢ + uᵧt + gt²/2
yբ = 0
yᵢ = 2 m
uᵧ = u sinθ = 20 sin 60 = 17.32 m/s
g = -9.8 m/s², t = ?
0 = 2 + 17.32t - 4.9t²
4.9t² - 17.32t - 2 = 0
Solving the quadratic equation,
t = 3.647 s or t = -0.1112 s
time is a positive variable, hence, t = 3.647 s. Option E.