50m
Explanation:
Displacement is the length of path traveled which is measured from start to the finishing of the path.
Analysis of the journey;
Starts from:
0 30m from right
15m to left
50m to right
The displacement is 50m from the starting point.
Distance is total path traveled and for this problem it is 30+ 15 + 50 = 95m
learn more:
displacement brainly.com/question/5461768
#learnwithBrainly
The frequency of the electromagnetic wave is 9.55 × 1014 Hz and it is classified as ultraviolet.
<h3>What is meant by electromagnetic waves?</h3>
Electromagnetic waves are forms of energy that are invisible and travel throughout the universe. However, some of the effects of this energy are visible. The light that we see is a component of the electromagnetic spectrum.
Electromagnetic waves, or EM waves, are produced by vibrations between an electric field and a magnetic field. In other words, electromagnetic waves are made up of oscillating magnetic and electric fields.
<h3>How do you calculate the speed of an electromagnetic wave?</h3>
The wavelength and frequency of any periodic wave are used to calculate its speed. v = λf.
In free space, the speed of any electromagnetic wave is equal to the speed of light, c = 3
108 m/s.
The frequency of the electromagnetic wave is 9.55 × 1014 Hz and it is classified as ultraviolet.
To learn more about electromagnetic wave refer to:
brainly.com/question/25847009
#SPJ4
Answer:
a. 11 m/s at 76° with respect to the original direction of the lighter car.
Explanation:
In this exercise, since both cars make a right angle, let's assume that the lighter car only has a horizontal velocity component (vx) and that the heavier one only has a vertical velocity component (vy). The final velocities for both components for the system can be determined as:

Assume that the lighter car has a 1kg mass and that the heavier car has a 4 kg mass.

The magnitude of the final velocity of the wreck can be found as:
![v_{f}^{2}= v_{fx}^{2}+ v_{fy}^{2}\\v_{f}=\sqrt[]{2.6^{2} + 10.4^{2}} \\v_{f}= 10.72](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%3D%20v_%7Bfx%7D%5E%7B2%7D%2B%20v_%7Bfy%7D%5E%7B2%7D%5C%5Cv_%7Bf%7D%3D%5Csqrt%5B%5D%7B2.6%5E%7B2%7D%20%2B%2010.4%5E%7B2%7D%7D%20%5C%5Cv_%7Bf%7D%3D%2010.72)
The final velocity has an intensity of roughly 11 m/s
As for the angle, it can be determined in respect to the lighter car (x axis) as follows:

Therefore, the wreck has a velocity with an intensity of 11 m/s at 76° with respect to the original direction of the lighter car.
Y₀ = initial position of the balloon at the top of the building = 44 m
Y = final position of the balloon at halfway down the building = 44/2 = 22 m
a = acceleration of the balloon = - 9.8 m/s²
v₀ = initial velocity of the balloon = 0 m/s
v = final velocity of the balloon = ?
using the kinematics equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
v² = 0² + 2 (- 9.8) (22 - 44)
v = 20.78 m/s