The change of state that has been given in the question is called sublimation. It is actually the process in which a solid gets directly converted to gas without changing into liquid. I hope that this is the answer that you were looking for and the answer has actually come to your desired help.
PH scale is used to determine how acidic or basic a solution is.
pH can be calculated as follows;
by knowing the ph we can calculate pOH
pH + pOH = 14
pOH = 14 - 8.1
pOH = 5.9
pOH is used to calculate the hydroxide ion concentration
pOH = -log[OH⁻]
[OH⁻] = antilog(-pOH)
[OH⁻] = 1.26 x 10⁻⁶ M
therefore hydroxide ion concentration is 1.26 x 10⁻⁶ M
<span>First:
46.7 g of N with 53.3 g of O,
=> mass ratio O to N = 53.3 / 46.7 = 1.1413
Second
17.9 g of N and 82.0 g of O.
mass ratio of O to N = 82.0 / 17.9 = 4.5810
Third
Ratio of the mass ratio of O to N in the second compound
to the mass ratio of O to N in the first compound =
= 4.5810 / 1.1413 = 4.013 ≈ 4
Answer: 4
</span>
<u>Answer:</u> The mass of solid NaOH required is 80 g
<u>Explanation:</u>
Equivalent weight is calculated by dividing the molecular weight by n factor. The equation used is:

where,
n = acidity for bases = 1 (For NaOH)
Molar mass of NaOH = 40 g/mol
Putting values in above equation, we get:

Normality is defined as the umber of gram equivalents dissolved per liter of the solution.
Mathematically,

Or,
......(1)
We are given:
Given mass of NaOH = ?
Equivalent mass of NaOH = 40 g/eq
Volume of solution = 400 mL
Normality of solution = 5 eq/L
Putting values in equation 1, we get:

Hence, the mass of solid NaOH required is 80 g
Answer: The Lattice energy is the energy required to separate an ionic solid into its component gaseous ions <em>or</em>
It is the energy released when gaseous ions combine to form an ionic solid.
Explanation:
The lattice energy depends on the ionization energies and electron affinities of atoms involved in the formation of the compound. The ionization energies and electron affinities also depends on the ionic radius and charges of the ions involved. As the ionic radius for cations <em>increases</em> down the groups, ionization energy <em>decreases</em>, whereas, as ionic radii <em>decreases</em> across the periods , ionization energy <em>increases</em>. The trend observed for anions is that as ionic radii <em>increase </em>down the groups, electron affinity <em>decreases. </em>Across the period, as ionic radii <em>increases</em> electron affinity <em>increases</em>. Also, as the charge on the ion <em>increases,</em> it leads to an <em>increase</em> in energy requirement/content.
Therefore, for compounds formed from cations and anions in the same period, the highest charged cation and anion will have the highest lattice energy. For example, among the following compounds: Al2O3 (aluminium oxide), AlCl3 (aluminium chloride), MgO, MgCl2 (magnesium chloride), NaCl, Na2O (sodium oxide); Al2O3(aluminium oxide) will have the highest lattice energy, thus will be hardest to break apart because its ions have the highest charge.