Answer:
100 m/s
Explanation:
Mass the mass of Bond's boat is m₁. His enemy's boat is twice the mass of Bond's i.e. m₂ = 2 m₁
Initial speed of Bond's boat is 0 as it won't start and remains stationary in the water. The initial speed of enemy's boat is 50 m/s. After the collision, enemy boat is completely stationary. Let v₁ is speed of bond's boat.
It is the concept of the conservation of momentum. It remains conserved. So,

Putting all the values, we get :

So, Bond's boat is moving with a speed of 100 m/s after the collision.
Answer:
-3.396 m/s or 3.465 m/s
Explanation:
v = Speed of sound in air = 343 m/s
= Relative speed of the singer
f = Observed frequency
f' = Actual frequency
1% change can mean 
From the Doppler effect equation we have

The velocity is -3.396 m/s
when 

The velocity is 3.465 m/s
Answer:
Explanation:
a) the speed increment of the hammer as it drops past the first window, is greater than that of the speed of the hammer as it drops past the second window. This can also be translated as saying that the hammer spent more time at the second window.
b) III
The best answer would be answer III, The hammer spends more time dropping past window 1, which I had already included in my explanation in (a) above.
The figure is showing a volume of 2.4 mL becuase it's feel 4 little segments.
Therefore, the answer is 2.4 mL.