The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
<h3 /><h3>What is speed?</h3>
Speed can be defined as the ratio of the total distance traveled by a body to the total time taken.
To calculate the speed of the sound in the xenon, we use the formula below.
Formula:
- v = λf............. Equation 1
Where:
- v = Speed of the sound in xenon
- f = Frequency
- λ = Wavelength.
From the question,
Given:
- f = 440 Hz
- λ = 40.4 cm = 0.404 m
Substitute the values above into equation 1
- v = 440(0.404)
- v = 177.76 m/s.
- v ≈ 178 m/s
Hence, The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
Learn more about speed here: brainly.com/question/4931057
Hi there!
We can use the kinematic equation:

vf = Final velocity (? m/s)
vi = initial velocity (0 m/s, dropped from rest)
a = acceleration (due to gravity, 9.8 m/s²)
d = distance (9.8 m)
Simplify the equation to solve for vf:

Substitute in the given values:

<span>I'll tell you how to do it but you must crunch the numbers.
Use Kepler's 3rd Law
T^2 = k R^3
where k = 4(pi)^2/ GM
G =gravitational constant = 6.67300 × 10-11 m3 kg-1 s-2
M = mass of this new planet
pi = 3.14159265
T =3.09 days = 266976 seconds
R = (579,000,000km)/9 = 64333333.3 km
a)
Solve Kepler's 3rd Law for M. Your answer will be in kg
b)
mass of the sun = 1.98892 × 10^30 kilograms
Form the ratio
M(planet)/M(sun) </span>
W = 4.9N. The weight of a basketball with a mass of 0.5Kg is 4.9N.
The weight of an object is the force of gravity on the object and can be defined as the product of the mass by the acceleration of gravity, w = mg.
W = (0.5Kg)(9.8 m/s²) = 4.9N