It provides a way to test a hypothesis
Answer:
D. Na₃X
Explanation:
We have the neutral compound Ba₃(X)₂. <em>The total charge (zero) is equal to the sum of the charges of the ions times the number of ions in the molecule</em>.
3 × qBa + 2 × qX = 0
3 × (+2) + 2 × qX = 0
2 × qX = -6
qX = -3
If we have the cation Na⁺ and X³⁻, a neutral molecule would require 3 Na⁺ and 1 X³⁻. The resulting compound is Na₃X.
Answer:
C4H8
Explanation:
First find the molar mass of CH2;
2(1.01) + 1(12.01) = 14.03g
Now divide the molar mass of the compound by the molar mass of CH2;
56g/14.03g = 3.9914 Round to nearest whole number = 4
Multiply CH2 by 4 to get the molecular formula;
CH2* 4 = C4H8
Answer:
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓
Ksp = [2s]² . [s] → 4s³
Explanation:
Ag₂CrO₄ → 2Ag⁺ + CrO₄⁻²
Chromate silver is a ionic salt that can be dissociated. When we have a mixture of both ions, we can produce the salt which is a precipitated.
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓ Ksp
That's the expression for the precipitation equilibrium.
To determine the solubility product expression, we work with the Ksp
Ag₂CrO₄ (s) ⇄ 2Ag⁺ (aq) + CrO₄⁻² (aq) Ksp
2 s s
Look the stoichiometry is 1:2, between the salt and the silver.
Ksp = [2s]² . [s] → 4s³
Answer: they are both at the same concentration
Explanation: You will know that the amount of solvent in and around the cell will be equivalent when they have the same amount of concentration. The answer to the question is they are both at the same concentration.