Answer:
2-methylene propylbenzene
Explanation:
The Wittig Reaction is a reaction that converts aldehydes and ketones into alkenes through reaction with a phosphorus ylide.
The ketone in this case is 1-phenylpropan-1-one. The provided phosphonium ylide is shown in the image attached. The reaction involves;
i) alkylation
ii) addition
The product of the major organic product of the reaction is 2-methylene propylbenzene.
Here we have to get the
of the reaction at 520 K temperature.
The
of the reaction is 1.705 atm
We know the relation between
and
is
, where
= The equilibrium constant of the reaction in terms of partial pressure,
= The equilibrium constant of the reaction in terms of concentration and N = number of moles of gaseous products - Number of moles of gaseous reactants.
Now in this reaction, PCl₃ + Cl₂ ⇄ PCl₅
Thus number of moles of gaseous product is 1, and number of moles of gaseous reactants are 2. Thus N = |1 - 2| = 1 mole
The given value of
is 4.0×10⁻²
The molar gas constant, R = 0.082 L. Atm. mol⁻¹. K⁻¹ and temperature, T = 520 K.
On plugging the values in the equation we get,

Or,
= 1.705 atm
Thus, the
of the reaction is 1.705 atm
a is the answer hope this helps