Answer:
1.65
Explanation:
The equation of the forces along the horizontal direction is:
(1)
where
F = 65 N is the force applied with the push
is the frictional force
m = 4 kg is the mass
is the acceleration
The force of friction can be written as
(2), where
is the coefficient of kinetic friction
R is the normal force exerted by the floor
The equation of forces along the vertical direction is
(3)
since the bookcase is in equilibrium. Substituting (2) and (3) into (1), we find

And solving for
,

Answer:
HERE IS YOUR ANSWER
Explanation:
PLEASE MARK MY ANSWER AS BRAINLIEST IF THE ANSWERS ARE CORRECT .
Beacuse of the loose connection of the wire .
Straight
Answer:6 joules
Explanation:
Mass(m)=3kg
Velocity(v)=2m/s
Kinetic energy=0.5 x m x v^2
Kinetic energy=0.5 x 3 x 2^2
Kinetic energy=0.5 x 3 x 2 x 2
Kinetic energy=6
Answer:
The magnet produces an electric current in the wire
Explanation:
Answer:
The wavelength of the light is 562.5 nm
Solution:
As per the question:
Order, n = 1
Slit separation, d = 
Distance from the bright fringe, y = 0.18 m
Distance between the screen and the grating, D = 0.8 m
Now,
We know from the eqn for diffraction:

n = 1
(1)
Also,
For very small angle,
:
≈ 
Using the above value in eqn (1):
