Answer:
A) Gravitational Force is greater in S.
B) Time taken to fall a given distance in air will be greater for F.
C) Both will take same time to fall in a vacuum.
D) Total force is greater in S.
Explanation:
(a) In this case, the gravitational force of S will be greater, because Newton's Second Law states that - F = ma, or weight =mg. g is constant. And mass of the solid metal is heavier.
(b) In this case, the time it will take for F to fall from a given distance in air will be greater than that of S, since the air resistance is not negligible (as in the case of S).
(c) In this, It will take same time for S and F because in a vacuum, there are no air particles, so there is no air resistance and gravity is the only force acting and so objects fall at the same rate in a vacuum.
(d) The total force will be greater in S than F because Force=ma and S is of heavier mass than F.
The force is gravitational because when something is falling is call gravitational
Answer:
Explanation:
If the work done on the cart is NET work
Then the work will result in an increase in kinetic energy
KE₀ + W = KE₁
½mv₀² + W = ½mv₁²
½(0.80)(0.61²) + 0.91 = ½(0.80)v₁²
v₁ = 1.626991...
v₁ = 1.6 m/s
Answer: I am pretty sure that you should pick radio waves.
Explanation: The scientist should use radio waves. I think this because you can use the radio waves to analyze the signals from outer space. This will work much better than anything there, to analyze it the best possible.
The best I could do.