Answer:
66.7%
Explanation:
Step 1: Write the balanced equation
CHCl₃ + Cl₂ ⇒ CCl₄ + HCl
Step 2: Calculate the theoretical yield of CCl₄ from 11.9 g of CHCl₃
According to the balanced equation, the mass ratio of CHCl₃ to CCl₄ is 119.38:153.82.
11.9 g CHCl₃ × 153.82 g CCl₄/119.38 g CHCl₃ = 15.3 g CCl₄
Step 3: Calculate the percent yield of CCl₄
Given the experimental yield of CCl₄ is 10.2 g, we can calculate the percent yield using the following expression.
%yield = (exp yield/theo yield) × 100%
%yield = (10.2 g/15.3 g) × 100% = 66.7%
Answer:
c
Explanation:
somehow i didnt have to look this up to help u lol i learned this is 6th grade
<span>0.0797 g
Looking at the formula, 1 mole of KIO3 and 5 moles of KI will react and produce moles of iodine molecules or 6 moles of iodine atoms. So first, determine the number of moles of KIO3 and KI provided
moles KIO3 = 0.0121 * 0.097 = 0.0011737 mol
moles KI = 0.0308 * 0.017 = 0.0005236 mol
The limiting reactant is KI at 0.0005236 mol so divide by 5 and multiply by 6 to get the number of moles of iodine atoms.
0.0005236 / 5 * 6 = 0.00062832 mol
Lookup the atomic weight of iodine which is 126.90447
And multiply that by the number of moles of iodine produced
126.90447 g/mol * 0.00062832 mol = 0.079736617 g
Rounding to 4 decimal places gives 0.0797 g</span>
Answer:
Described down below.
Explanation:
Hello,
- Boyle's law: correlation between pressure and volume (assuming temperature and amount of gas remain constant). One common use of Boyle’s law is to predict the new volume of a gas when the pressure is changed (at constant temperature), or vice versa
- Charles' law: correlation between temperature and volume (assuming pressure and amount of gas remain constant). It is used to prove that the absolute 0 unattainable (T=0K).
- Avogadro's law: correlation between amount of gas and volume (assuming temperature and pressure p remain constant). As an example, since we can blow up a basketball, we are adding more gas molecules into it. The more gaseous molecules, the greater the volume.
- Dalton's law: correlation that states that for a mixture of gases in a container, the total pressure exerted is the addition among each pressure that each gas would exert if it were alone. It is useful to analyze the effects of which partial pressure might have on scuba divers. While the total gas pressure increases as a diver increases their descent, the partial pressure of each gas involved increases as well which might cause harm to the diver’s body if proper actions are not carried out.
- Gay-Lussac's law: it states that when the temperature of a sample of gas in a rigid container is increased, the pressure of the gas increases as well. An interesting example is shown when gun pin strikes, because it ignites the gun powder and this increases the temperature which in turn increases the pressure and bullet is fired from the gun.
Best regards.