m = mass of the penny
r = distance of the penny from the center of the turntable or axis of rotation
w = angular speed of rotation of turntable
F = centripetal force experienced by the penny
centripetal force "F" experienced by the penny of "m" at distance "r" from axis of rotation is given as
F = m r w²
in the above equation , mass of penny "m" and angular speed "w" of the turntable is same at all places. hence the centripetal force directly depends on the radius .
hence greater the distance from center , greater will be the centripetal force to remain in place.
So at the edge of the turntable , the penny experiences largest centripetal force to remain in place.
Special relativity led the path for general relativity; special relativity is in a sense a special application of the rules of general relativity. While general relativity is in position to tackle all of these problems, special relativity can tackle only problems in inertial frames. Inertial frame means that the frame of reference is inot accelerating. So, we disqualify answers A and D. However, remember that moving in a circle means that there is an acceleration, the centrifugal one, even if the speed does not change. Hence C is also incorrect.
The correct answer is B, since if there is no change in velocity, the frame does not accelerate and it is inertial.
Answer:
The sled slides d=0.155 meters before rest.
Explanation:
m= 60 kg
V= 2 m/s
μ= 0.3
g= 9.8 m/s²
W= m * g
W= 588 N
Fr= μ* W
Fr= 176.4 N
∑F = m * a
a= (W+Fr)/m
a= 12.74m/s²
t= V/a
t= 0.156 s
d= V*t - a*t²/2
d= 0.155 m

If the separation between the charges is increased then the magnitude of the force will increase in fact how the distance is being used in that formula.