Answer:
Explanation:
Let the potential difference between the middle point and one of the plate be ΔV .
electric potential energy will be lost and it will be converted into kinetic energy .
Electrical potential energy lost = Vq , where q is charge on charge particle .
For proton
ΔV× q = 1/2 M V² ( kinetic energy of proton )
where M is mass and V be final velocity of proton .
For electron
ΔV× q = 1/2 m v² ( kinetic energy of electron )
where m is mass and v be final velocity of electron . Charges on proton and electron are same in magnitude .
As LHS of both the equation are same , RHS will also be same . That means the kinetic energy of both proton and electron will be same
1/2 M V² = 1/2 m v²
(V / v )² = ( m / M )
(V / v ) = √ ( m / M )
In other words , their velocities are inversely proportional to square root of their masses .
Total distance = 36500 m
The average velocity = 19.73 m/s
<h3>Further explanation</h3>
Given
vo=initial velocity=0(from rest)
a=acceleration= 1 m/s²
t₁ = 20 s
t₂ = 0.5 hr = 1800 s
t₃= 30 s
Required
Total distance
Solution
State 1 : acceleration


State 2 : constant speed

State 3 : deceleration


Total distance : state 1+ state 2+state 3

the average velocity = total distance : total time

The ball rolled a distance of
d = 12m + 20m.
But the change of position is
x = + 12m - 20m
The observer can conclude that the sound is moving away from them and that its speed is increasing.