Answer:
3.7 A
Explanation:
Parameters given:
Magnetic field strength, B = 5 * 10^(-5) T
Distance of magnetic field from wire, r = 1.5 cm = 0.015 m
The magnetic field, B, due to a current, I, flowing a wire is given as:
B = (μ₀*I) / 2πr
Where μ₀ = permeability of free space
To get the current, I, we make I the subject of the formula:
I = (2πr * B) / μ₀
I = (2 * 3.142 * 5 * 10^(-5)) / (1.25663706 × 10^(-6))
I = 3.7 A
1) nuclear fusion
During nuclear fusion, the high pressure and temperature in the sun's core cause nuclei to separate from their electrons. During this process, radiant energy is released.
The law of conservation of momentum tells us that momentum
is conserved, therefore total initial momentum should be equal to total final
momentum. In this case, we can expressed this mathematically as:
mA vA + mB vB = m v
where, m is the mass in kg, v is the velocity in m/s
since m is the total mass, m = mA + mB, we can write the
equation as:
mA vA + mB vB = (mA + mB) v
furthermore, car B was at a stop signal therefore vB = 0,
hence
mA vA + 0 = (mA + mB) v
1800 (vA) = (1800 + 1500) (7.1 m/s)
<span>vA = 13.02 m/s</span>
Answer:
the atom cannot be divided into smaller particles
electrons orbit around the center of the atom
Newton’s first law of motion, also called the law on inertia, states that an object continues in its state of rest or of uniform motion unless compelled to change that state by an external force.Newton’s second law of motion states that if a net force acts on an object, it will cause an acceleration of that object.Newton’s third law of motion<span> states that for every action there is an equal and opposite reaction. hope this wasnt two long!</span>