Answer:
403 mL
Explanation:
First, I will assume that the mole is 1, because you are not specifing this.
Now, with the innitial data, we need to get the pressure:
T = 65+273 = 338 K
V = 500 / 1000 = 0.5 L
Now if:
PV = nRT
Then:
P = nRT/V and V = nRT/P
Let's calculate the P:
P = 1 * 0.082 * 338 / 0.5 = 55.432 atm
The standard temperature is 0° C or 273 K so, the volume is:
V = 1 * 0.082 * 273 / 55.432
V = 0.40384 L or simply 403.84 mL
Answer:
The angle of incoming sunlight varies at different places
Answer:
The statements are definitions to chromatography terms which have been highlighted below.
Explanation:
Match the chromatography term with its definition.
Volumetric Flow Rate = The volume of solvent traveling through the column per unit time.
Retention time = The elapsed time between sample injection and detection.
Adjusted Retention Time = The time required by a retained solute to travel through the column beyond the time required by the un -retained solvent.
Linear Flow Rate = The distance traveled by the solvent per unit time.
Retention factor = Describes the amount of time that a sample spends in the stationary phase relative to the mobile phase. It is sometimes also called the capacity factor or capacity ratio.
Relative Volume = Volume of the mobile phase required to elute a solute from the column.
Relative Retention = Ratio of the adjusted retention times or retention factors of two solutes. It is sometimes also called the separation factor.
Partition coefficient = The ratio of the solute concentrations in the mobile and stationary phases.
Scientists use Scientific notation
Answer: 65.28 g of
will be produced from 34.6 g of Al.
Explanation:
To calculate the moles :
The balanced chemical reaction is
According to stoichiometry :
4 moles of
produce = 2 moles of
Thus 1.28 moles of
produce=
of
Mass of
=
Thus 65.28 g of
will be produced from 34.6 g of Al.