Explanation:
A. Hydrogen bonding is present in CS2 but not in CO2.
B. CS2 has greater dipole moment than CO2 and thus the dipole-dipole forces in CS2 are stronger.
C. CS2 partly dissociates to form ions and CO2 does not. Therefore, ion-dipole interactions are present in CS2 but not in CO2.
D. The dispersion forces are greater in CS2 than in CO2.
<u><em>PLS MARK BRAINLIEST :D</em></u>
<span>There are 2 carbon atoms in ethanoic acid. Other name of such substance is acetic acid. It is a colorless liquid carboxylic acid with the chemical formula CH3COOH. It has antibacterial and antifungal properties.</span>
Answer:
This means that the isotope of silicon with a mass number of 28 is by far the most common of these three isotopes.
Explanation:
The abundance of Si-28 is 92.23%. Si-29 is 4.68% and Si-30 is 3.09%.
Because most Si atoms have a mass of 28 amu, the average mass of all silicon atoms is very close to 28.
Here is a video which summarizes how to calculate average atomic mass from data about mass and relative abundance.
Answer:
Explanation:
The result will be affected.
The mass of KHP weighed out was used to calculate the moles of KHP weighed out (moles = mass/molar mass).
Not all the sample is actually KHP if the KHP is a little moist, so when mass was used to determine the moles of KHP, a higher number of moles than what is actually present would be obtained (because some of that mass was not KHP but it was assumed to be so. Therefore, there is actually a less present number of moles than the certain number that was thought of.
During the titration, NaOH reacts in a 1:1 ratio with KHP. So it was determined that there was the same number of moles of NaOH was the volume used as there were KHP in the mass that was weighed out. Since there was an overestimation in the moles of KHP, then there also would be an overestimation in the number of moles of NaOH.
Thus, NaOH will appear at a higher concentration than it actually is.