Answer: (a). E = 3.1656×10³⁴ √k/m
(b). f = 9.246 × 10¹² Hz
(c). Infrared region.
Explanation:
From Quantum Theory,
The energy of a proton is proportional to the frequency, from the equation;
E = hf
where E = energy in joules
h = planck's constant i.e. 6.626*10³⁴ Js
f = frequency
(a). from E = hf = 1 quanta
f = ω/2π
where ω = √k/m
consider 3 quanta of energy is lost;
E = 3hf = 3h/2π × √k/m
E = (3×6.626×10³⁴ / 2π) × √k/m
E = 3.1656×10³⁴ √k/m
(b). given from the question that K = 15 N/m
and mass M = 4 × 10⁻²⁶ kg
To get the frequency of the emitted photon,
Ephoton =hf = 3h/2π × √k/m (h cancels out)
f = 3h/2π × √k/m
f = 3h/2π × (√15 / 4 × 10⁻²⁶ )
f = 9.246 × 10¹² Hz
(c). The region of electromagnetic spectrum, the photon belongs to is the Infrared Spectrum because the frequency ranges from about 3 GHz to 400 THz in the electromagnetic spectrum.
is the volume of the sample when the water content is 10%.
<u>Explanation:</u>
Given Data:

First has a natural water content of 25% =
= 0.25
Shrinkage limit, 

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,
![V \propto[1+e]](https://tex.z-dn.net/?f=V%20%5Cpropto%5B1%2Be%5D)
------> eq 1

The above equation is at
,

Applying the given values, we get

Shrinkage limit is lowest water content

Applying the given values, we get

Applying the found values in eq 1, we get


Annual Payment where F is accumulated sum of amount, n is number of years and i is annual rate of interest. The standard notation equation is in the image since i can’t type it-
Answer:
ΔT= 11.94 °C
Explanation:
Given that
mass of water = 10 kh
Time t= 15 min
Heat lot from water = 400 KJ
Heat input to the water = 1 KW
Heat input the water= 1 x 15 x 60
=900 KJ
By heat balancing
Heat supply - heat rejected = Heat gain by water
As we know that heat capacity of water


Now by putting the values
900 - 400 = 10 x 4.187 x ΔT
So rise in temperature of water ΔT= 11.94 °C