The phase change in which the water molecules become most orderly is the freezing. This is the process of changing water as liquid to its solidified form. The process of freezing is an exothermic which means that for this to occur, heat should be removed from the system.
ΔHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
Bond enthalpies,
N ≡ N ⇒ 945 kJ mol⁻¹
N - Cl ⇒ 192 kJ mol⁻¹
Cl - Cl⇒ 242 kJ mol⁻¹
According to the balanced equation,
ΣδΗ(bond breaking) = N ≡ N x 1 + Cl - Cl x 3
= 945 + 3(242)
= 1671 kJ mol⁻¹
ΣδΗ(bond making) = N - Cl x 3 x 2
= 192 x 6
= 1152 kJ mol⁻¹
δHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
= 1671 kJ mol⁻¹ - 1152 kJ mol⁻¹
= 519 kJ mol⁻¹
First, you need to count copper mass in alloy.
Second, you have to make an equation an find x ( the copper mass must be added). The answer is: 13,5g pure copper
Because when you compress something, you compress an object to either tighten or get it smaller.
Since liquids have no shape of their own, you cannot squeeze or squish it to tighten/get it smaller.
Hopes this helps <span />