The answer is C, because the water molecules are evaporating and the salt molecules are staying the same.
Answer:
Explanation:
Let initial extension in the spring= x₀
Force on the spring = F₀
Let spring constant = k
Fo = k x₀
Fn = 3k x₀
Fn /Fo = 3
PEs0 ( ORIGINAL) =1/2 k x₀²
PEsn ( NEW) =1/2 k (3x₀)²
PEsn / PEs0 = 9
Answer:
Ro = 7.8 [g/cm³]
Explanation:
According to the principle of Archimedes, the volume of a body immersed in a liquid is equal to the volume displaced by water. That is, in this problem The displacement volume is equal to the new volume minus the original volume.
![V_{n}=110[cm^{3} ]\\V_{o}=100[cm^{3} ]\\V_{d}=110-100 = 10 [cm^{3} ]](https://tex.z-dn.net/?f=V_%7Bn%7D%3D110%5Bcm%5E%7B3%7D%20%5D%5C%5CV_%7Bo%7D%3D100%5Bcm%5E%7B3%7D%20%5D%5C%5CV_%7Bd%7D%3D110-100%20%3D%2010%20%5Bcm%5E%7B3%7D%20%5D)
We now know that density is defined as the relationship between mass and volume.

where:
Ro = density [g/cm³]
m = mass = 78 [g]
Vd = displacement volume [cm³]
![Ro = 78/10\\Ro = 7.8 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%20%3D%2078%2F10%5C%5CRo%20%3D%207.8%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
Answer:
Explanation:
Given
Initial velocity of ball 
height of window 
Using Equation of motion

where u=initial velocity
t=time
a=acceleration
As ball is already is at a height of 20 m so



(b)highest point is obtained at v=0

where
v=final velocity
u=initial velocity
a=acceleration
s=displacement



Highest Point will be 
(c)Time taken when the ball hit the ground i.e. at Y=0


impact velocity 