It is a universal constant used for all gases
B is the answer I think hope this helps
Answer:
-3
Explanation:
The oxidation state or oxidation number of an atom is the total number of electrons that an atom either gains or loses in order to form a chemical bond with another atom.
The complex anion here is [Cr(CN)6]3-.
Now, as the oxidation state of CN or cyanide ligand is -1, and if we suppose the oxidation state of Cr to be 'x', then; x - 6 = -3 (overall charge on the anion),
so x= +3. Hence the oxidation state of Chromium in this complex hexacyanochromium (III) anion comes out to be -3.
.
Since water is already at 100<span>°C all the energy is used to evaporate it.
Now we can calculate how many </span>mols of water are evaporated with 820kJ.

We calculated that we got 20 mols of water evaporated. Now, all we have to do is find how many grams is a mol of water. Molar mass of water is <span>20.16 g/mol.
</span>The final answer is:
Answer : The approximate relation Celsius = 1/2 Fahrenheit is a better approximation at higher temperatures
Explanation :
The formula for Celsius to Fahrenheit conversion is

At lower temperature the value that needs to be subtracted (32) is large enough as a result the approximation "celsius = 1/2 fahrenheit " does not seem valid.
For example, 50 F is 10°C.

This is almost 1/5 of Fahrenheit temperature.
But at higher temperatures , the value becomes insignificant and also the ratio 5/9 tend to be equal to 0.5.
For example, 2000 F is 1093°C

This is almost half of Fahrenheit temperature.
Therefore , the approximate relation Celsius = 1/2 Fahrenheit is a better approximation at higher temperatures