Explanation:
Hydrogen (H)
Helium (He)
Lithium (Li)
Beryllium (Be)
Boron (B)
Carbon (C)
Nitrogen (N)
Oxygen (O)
Fluorine (F)
Neon (Ne)
Sodium (Na)
Magnesium (Mg)
Aluminum (Al)
Silicon (Si)
Phosphorus (P)
Sulfur (S)
Chlorine (Cl)
Argon (Ar)
Potassium (K)
Calcium (Ca)
Hope this is correct and helpful
HAVE A GOOD DAY!
Answer is: Ksp = 4s³.
Balanced chemical reaction (dissociation) of strontium hydroxide:
Sr(OH)₂(s) → Sr²⁺(aq) + 2OH⁻(aq).
Ksp(Sr(OH)₂) = [Sr²⁺]·[OH⁻]².<span>
[</span>Sr²⁺] = s.<span>
[</span>OH⁻] = [Sr²⁺] = 2s<span>
Ksp = (2s)² · x = 4s³.
Ksp is the solubility product constant for
a solid substance dissolving in an aqueous solution.
[</span>Sr²⁺]
is equilibrium concentration of iumcations.<span>
[</span>OH⁻] is equilibrium concentration of hydroxide anions.
A covalent bond describes two atoms (most likely nonmetals) that share their valence electrons to satisfy the octet rule. Carbon and oxygen are both nonmetals, and they would share electrons with each other through a bond that is not polar enough to be considered ionic. The answer should be B
Answer:
In ionic bonding, atoms transfer electrons to each other. Ionic bonds require at least one electron donor and one electron acceptor. In contrast, atoms with the same electronegativity share electrons in covalent bonds, because neither atom preferentially attracts or repels the shared electrons.
Answer:
Mass, temperature, and phase.
I think temperature because the higher the temperature of a given quantity of a substance, more is its thermal energy. Similarly, for the same temperature, higher mass of a substance will contain more thermal energy.