Balanced reaction for formation of water is ;
2H2 + O2 —> 2H2O
Stoichiometry of H2 to H20 is 2:2
1 mol of any gas occupies a volume of 22.4 L
Therefore it 22.4 L contains 1 mole
Then 1.24 L has -1/22.4 x 1.24 = 0.055 mol
Number of water moles formed = 0.055 mol
Therefore mass of water formed = 0.055 mol x 18 g/mol = 0.99 g of water is formed
Answer:
Cu(s) in Cu(NO₃)₂(aq)
Explanation:
The standard reduction potential (E°) is the energy necessary to reduce the atom in a redox reaction. When an atom reduces it gains electrons from other than oxides. As higher is E°, easily it will reduce. The substance that reduces is at the cathode of a cell, where the electrons go to, and the other that oxides are at the anode of the cell.
The standard reduction potentials from Al(s) and Cu(s) are, respectively, -1.66V and +0.15V, so the half-cell of Cu(s) in Cu(NO₃)₂(aq) is the cathode.
Answer:
One gallon of octane produces approximately 7000 L of carbon dioxide.
Note:
I believe that the mass of octane should have been given as 2661 g. However, I understand that your instructor probably gave you this problem, so I will use 4000 g for the approximate mass of one gallon of octane. You can rework the problem on your own, substituting the correct masses of octane if you wish.
Step1. You must first determine the number of moles that are in 4000 g of octane, using the molar mass of octane. Step 2. Then you must determine the number of moles of carbon dioxide that can be produced by that number of moles of octane, based on the mole ratio between octane and carbon dioxide in the balanced equation. Step 3. Then use the ideal gas law to determine the volume in liters of carbon dioxide that can be formed.
Using p1v1/t1=p2v2/t2
p1=50
p2=225
v1=400ml
v2=?
t1=-20=253k
t2=60=333k
50x400/253=225xv2/333
7.9=0.7xv2
v2=7.9/0.7
v2=11.3ml
Agriculture, space exploration, and also for medical purposes.
Hope I helped :)