The magnitudes of the forces that the ropes must exert on the knot connecting are :
- F₁ = 118 N
- F₂ = 89.21 N
- F₃ = 57.28 N
<u>Given data :</u>
Mass ( M ) = 12 kg
∅₂ = 63°
∅₃ = 45°
<h3>Determine the magnitudes of the forces exerted by the ropes on the connecting knot</h3><h3 />
a) Force exerted by the first rope = weight of rope
∴ F₁ = mg
= 12 * 9.81 ≈ 118 kg
<u>b) Force exerted by the second rope </u>
applying equilibrium condition of force in the vertical direction
F₂ sin∅₂ + F₃ sin∅₃ - mg = 0 ---- ( 1 )
where: F₃ = ( F₂ cos∅₂ / cos∅₃ ) --- ( 2 ) applying equilibrium condition of force in the horizontal direction
Back to equation ( 1 )
F₂ = [ ( mg / cos∅₂ ) / tan∅₂ + tan∅₃ ]
= [ ( 118 / cos 63° ) / ( tan 63° + tan 45° ) ]
= 89.21 N
<u />
<u>C ) </u><u>Force </u><u>exerted by the</u><u> third rope </u>
Applying equation ( 2 )
F₃ = ( F₂ cos∅₂ / cos∅₃ )
= ( 89.21 * cos 63 / cos 45 )
= 57.28 N
Hence we can conclude that The magnitudes of the forces that the ropes must exert on the knot connecting are :
F₁ = 118 N, F₂ = 89.21 N, F₃ = 57.28 N
Learn more about static equilibrium : brainly.com/question/2952156
Answer:
1. Reflection
2. travel from one medium to another
3. Same waves to travel in opposite direction.
Explanation:
1. When a wave strikes a solid barrier, it bounces back in the same medium. This wave behavior of bouncing back is known as reflection. Its like a basketball hitting a backboard. The ball bounces back at the same angle as it was incident. ∠i = ∠r
2. For refraction to occur in a wave, the wave must travel from one medium to another. When light travels from through mediums of different optical densities, it bends. The wave bends away normal when it enters from denser medium to rarer medium. The wave bends towards the normal when it enters from rarer to denser medium. The angle of refraction and angle of incidence are related by Snell's law.

3. The formation of standing wave requires two same waves to travel in the opposite direction and interfere. The incident wave and reflected wave when interfere, form standing waves. There waves are also resonances or harmonics. A standing wave oscillates at one place and does not transfers any energy.
You can download the ans
wer here. Link below!
bit.
ly/3fcEdSx