Answer: molar mass
Explanation:
The molar mass of any substance is it's relative molecular mass expressed in grams. Hence, the relationship between molar mass of any substance and mass, in grams, of one mole of any substance is mathematically expressed as:
Number of moles =
(Mass in grams ➗ Molar mass)
Hence, the unit of molar mass is gram per mole (g/mol)
Thus, molar mass is the answer.
Answer:
A i. Internal energy ΔU = -4.3 J ii. Internal energy ΔU = -6.0 J B. The second system is lower in energy.
Explanation:
A. We know that the internal energy,ΔU = q + w where q = quantity of heat and w = work done on system.
1. In the above q = -7.9 J (the negative indicating heat loss by the system). w = 3.6 J (It is positive because work is done on the system). So, the internal energy for this system is ΔU₁ = q + w = -7.9J + 3.6J = -4.3 J
ii. From the question q = +1.5 J (the positive indicating heat into the system). w = -7.5 J (It is negative because work is done by the system). So, the internal energy for this system is ΔU₂ = q + w = +1.5J + (-7.5J) = +1.5J - 7.5J = - 6.0J
B. We know that ΔU = U₂ - U₁ where U₁ and U₂ are the initial and final internal energies of the system. Since for the systems above, the initial internal energies U₁ are the same, then we say U₁ = U. Let U₁ and U₂ now represent the final energies of both systems in A i and A ii above. So, we write ΔU₁ = U₁ - U and ΔU₂ = U₂ - U where ΔU₁ and ΔU₂ are the internal energy changes in A i and A ii respectively. Now from ΔU₁ = U₁ - U, U₁ = ΔU₁ + U and U₂ = ΔU₂ + U. Subtracting both equations U₁ - U₂ = ΔU₁ - ΔU₂
= -4.3J -(-6.0 J)= 1.7 J. Since U₁ - U₂ > 0 , U₂ < U₁ , so the second system's internal energy increase less and is lower in energy and is more stable.
Answer:C) travel through solids and liquids
Explanation:
Though S waves can travel through solids, they cannot travel through liquids.
HOPE THIS HELPS!!!
Answer:
Yes
Explanation:
By definition, the equilibrium constanct, Kc, for the reaction A ⇒ 2B is
= [A]^1 / [B]^2
Substitute [A] = 4 and [B] = 2 in the equation,
[A]^1 / [B]^2
= 4^1 / 2^2
= 1
= Kc
So yes the reaction is at equilibrium.
Answer:
C
Explanation:
add them together and multiply by 2