Answer:
a) 35°C, the temperature on a hot summer day
b) -11.11°C, the temperature on a cold winter day
c) a 38.88°C fever
d) a furnace operating at 1011.11°C
e) 523.67°F ( theoretically the lowest attainable temperature )
Explanation:
- °C = ( °F - 32 ) / 1.8
- °F = ( 1.8 * °C ) +32
a) 95°F ⇒ °C = ( 95 - 32 ) / 1.8 = 35°C
b) 12°F ⇒ °C = ( 12 - 32 ) / 1.8 = -11.11°C
c) 102°F ⇒ °C = ( 102 -32 ) / 1.8 = 38.88°C
d) 1852°F ⇒ °C = ( 1852 -32 ) / 1.8 = 1011.11°C
e) 273.15°C ⇒ °F = ( 1.8 * 273.15 ) + 32 = 523.67°F
Answer:
The percent composition is 21% N, 6% H, 24% S and 49% O.
Explanation:
1st) The molar mass of (NH4)2SO4 is 132g/mol, and it represents the 100% of the mass composition.
In 1 mole of (NH4)2SO4, there are:
- 2 moles of N.
- 8 moles of H.
- 1 mole of S.
- 4 moles of O.
2nd) It is necessary to calculate the mass of each element, multiplying its molar mass by the number of moles:
- 2 moles of N (14g/mol) = 28g
- 8 moles of H (1g/mol) = 8g
- 1 mole of S (32g/mol) = 32g
- 4 moles of O (16g/mol) = 64g
3rd) With a mathematical rule of three we can calculate the percent composition of each element in the molecule of (NH4)2SO4:




In this case, we can calculate the percent composition of Oxygen by subtracting the other percentages, since the total must be 100%.
So, the percent composition is 21% N, 6% H, 24% S and 49% O.
The product of prime polynomials is equivalent to 36x3 – 15x2 – 6x is letter B which is 3x(3x – 2)(4x 1). Below is the solution.
3x(3x - 2) (4x + 1)
= 9x2 - 6x (4x + 1)
= 36x3 + 9x2 + - 24x2 - 6x
= 36x3 - 15x2 - 6x