Answer:
The answer is D because NH4+and OH- it will be
N-1. N-1,
H-5
O-1 H-5
O-1
Answer:
Radiation effects on electrical equipment depend on the equipment and on the type of ionizing radiation to which it is exposed.
First, beta radiation has little, if any, effect on electrical equipment because this type of ionizing radiation is easily shielded. The equipment housing and the construction of the parts within the housing will protect the equipment from beta-radiation (high-energy electrons) exposure.
Gamma radiation is penetrating and can affect most electrical equipment. Simple equipment (like motors, switches, incandescent lights, wiring, and solenoids) is very radiation resistant and may never show any radiation effects, even after a very large radiation exposure. Diodes and computer chips (electronics) are much more sensitive to gamma radiation. To give you a comparison of effects, it takes a radiation dose of about 5 Sv to cause death to most people. Diodes and computer chips will show very little functional detriment up to about 50 to 100 Sv. Also, some electronics can be "hardened" (made to be not affected as much by larger gamma radiation doses) by providing shielding or by selecting radiation-resistant materials.
Some electronics do exhibit a recovery after being exposed to gamma radiation, after the radiation is stopped. But the recovery is hardly ever back to 100% functionality. Also, if the electronics are exposed to gamma radiation while unpowered, the gamma radiation effects are less.
Ionizing radiation breaks down the materials within the electrical equipment. For example, when wiring is exposed to gamma rays, no change is noticed until the wiring is flexed or bent. The wire's insulation becomes brittle and will break and may cause shorts in the equipment. The effect on diodes and computer chips is a bit more complex. The gamma rays disrupt the crystalline nature of the inside of the electronic component. Its function is degraded and then fails as more gamma radiation exposure is received by the electronic component.
Gamma rays do not affect the signals within the device or the signals received by the device. Nonionizing radiation (like radio signals, microwaves, and electromagnetic pulses) DO mess with the signals within and received by the device. I put a cheap electronic game in my microwave oven at home. It arced and sparked and was totally ruined. I didn’t waste any more of my time playing that game.
Hope this helps.
Explanation:
MARK ME AS BARINIEST PLS
Answer:
-290KJ/mol
Explanation:
ΔHrxn = ΔHproduct - ΔHreactant
ΔHrxn= 4ΔHH3PO4 - {6ΔHH2O + ΔHP4O10}
ΔHrxn = 4(-1279) - [6(-286) - 3110]
= -5116 -(-1716-3110)
= -5116-(-4826)
= -5116 + 4826 = -290KJ/mol
There are things called "Reactants" and "Products" All chemical equations look something like "A + B →C (+ D...)," in which each letter variable is an element or a molecule (a collection of atoms held together by chemical bonds). The arrow represents the reaction or change taking place. Some equations may have a double-headed arrow (↔), which indicates that the reaction can proceed either forward or backward. When a compound has been written out, you must identify the elements and know their chemical symbols. The first element written is “first name” of the compound. Use the periodic table to find the chemical symbol for the element. So here is an example: Dinitrogen hexafluoride. The first element is nitrogen and the chemical symbol for nitrogen is N. To know the numbers of atoms that are present for each element you can just look at the prefix from the element For example: Dinitrogen has a the prefix “di-“ which means 2; therefore, there are 2 atoms of nitrogen present.
Write dinitrogen as N2.
Now for the second element or "last name" of the compound whatever will follow the first element so like; Dinitrogen hexafluoride. The second element is fluorine. Simply replace the “ide” ending with the actual element name. The chemical symbol for fluorine is F.
But the more you practice with, the easier it will be to decipher chemical formulas in the future and learn the language of chemistry.
Sulfur dioxide: SO2
Carbon tetrabromide: CBr4
Diphosphorus pentoxide: P2O5 ← That is one of the examples I'll give you.
have a gooooood daaaaayy