In order to build a hypothesis, Joan should take an educated guess at what the effect of adding salt to the water will be on the water's boiling point. For example, the hypothesis may be,"The boiling point will increase". This hypothesis is one that can be verified or rejected via experimentation. The next step for Joan would be to set up an experiment to test this hypothesis.
Answer:
The phase difference between these two waves is 141.1⁰
Explanation:
The displacement of the wave is given as;

Amplitude, A = 2yₓCos(¹/₂Φ)
Since the amplitude of the combination is 1.5 times that of one of the original amplitudes = yₓ = 1.5 × A = 1.5A
A = 2(1.5A)Cos(¹/₂Φ)
A = 3ACos(¹/₂Φ)
¹/₃ = Cos(¹/₂Φ)
(¹/₂Φ) = Cos ⁻(0.3333)
(¹/₂Φ) = 70.55°
Φ = 141.1°
The phase difference between these two waves is 141.1⁰
Answer:
The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Explanation:
Given;
coefficient of kinetic friction, μ = 0.84
speed of the automobile, u = 29.0 m/s
To determine the the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;
v² = u² + 2ax
where;
v is the final velocity
u is the initial velocity
a is the acceleration
x is the shortest distance
First we determine a;
From Newton's second law of motion
∑F = ma
F is the kinetic friction that opposes the motion of the car
-Fk = ma
but, -Fk = -μN
-μN = ma
-μmg = ma
-μg = a
- 0.8 x 9.8 = a
-7.84 m/s² = a
Now, substitute in the value of a in the equation above
v² = u² + 2ax
when the automobile stops, the final velocity, v = 0
0 = 29² + 2(-7.84)x
0 = 841 - 15.68x
15.68x = 841
x = 841 / 15.68
x = 53.64 m
Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m
Answer:
The value is 
Explanation:
From the question we are told that
The distance of the speaker from the second speaker to the east is
The distance of the speaker from the listener to the south is 
Generally given that if the speaker move in any direction, their sound become louder , it then mean that the position of the listener of minimum sound (i.e a position of minima ) ,
Generally the path difference of the sound produce by both speaker at a position of minima is mathematically represented as
Generally considering the orientation of the speakers and applying Pythagoras theorem we see that distance from the second speaker to the listener is mathematically represented as

=> 
=> 
Generally the path difference between the two speaker with respect to the listener is
=>
=> 
So
=> 
Answer: 
Explanation:
Given
Mass of particle is 
Charge of particle is 
Electrostatic force must balance the weight of the particle

Direction of the electric field is in upward direction such that it opposes the gravity force.