Answer: B
Explanation: I'm not 100% sure tho sorry if i'm wrong
Answer:
80.6 mV
Explanation:
Parameters given:
Number of turns, N = 115
Radius of coil, r = 2.71 cm = 0.0271m
Time taken, t = 0.133s
Initial magnetic field, Bin = 50.1 mT = 0.0501 T
Final magnetic field, Bfin = 90.5 mT = 0.0905 T
Induces EMF is given as:
EMF = [(Bfin - Bin) * N * A] / t
EMF = [(0.0905 - 0.0501) * 115 * pi * 0.0271²] / 0.133
EMF = (0.0404 * 115 * 3.142 * 0.0007344) / 0.133
EMF = 0.0806 V = 80.6 mV
Answer:
I = (1.80 × 10⁻¹⁰) A
Explanation:
From Biot Savart's law, the magnetic field formula is given as
B = (μ₀I)/(2πr)
B = magnetic field = (1.0 × 10⁻¹⁵) T
μ₀ = magnetic constant = (4π × 10⁻⁷) H/m
r = 3.6 cm = 0.036 m
(1.0 × 10⁻¹⁵) = (4π × 10⁻⁷ × I)/(2π × 0.036)
4π × 10⁻⁷ × I = 1.0 × 10⁻¹⁵ × 2π × 0.036
I = (1.80 × 10⁻¹⁰) A
Hope this Helps!!!
Answer:
√(6ax)
Explanation:
Hi!
The question states that during a time t the motorcyle underwent a displacement x at constant acceleration a starting from rest, mathematically we can express it as:
x=(1/2)at^2
Then the we need to find the time t' for which the displacement is 3x
3x=(1/2)a(t')^2
Solving for t':
t'=√(6x/a)
Now, the velocity of the motorcycle as a function of time is:
v(t)=a*t
Evaluating at t=t'
v(t')=a*√(6x/a)=√(6*x*a)
Which is the final velocity
Have a nice day!