Answer: your answer is waves.
I will type random words cause my answer is “too short”: dnuidnuindudnnnudinnndijndiudnnnndnijndjidnjidnijdnijdnnnndnjidnjidnnn
The missing part of the incomplete question is given below:
Which important step of scientific design is Shameka conducting?
repetition
replication
verification of results
using controlled variables
Answer:
Verification of results
Explanation:
The way toward gathering five examples of water from various sources is conveyed to confirm the outcome. By gathering water from five distinct areas of a similar source the analyst can genuinely find out the nature of the water in her region of remain.
On the off chance that after examples are tried it is found the water isn't sound, the outcomes would be acknowledged as it has been appropriately checked and a proper move would be made.
Thus, the correct answer is - verification of results
Answer:
4miles/hour
Explanation:
the solution for this question requires that the quantities are converted to the appropriate units as required by the question.
Rate in miles per hour = distance in miles / time in hour
to convert 12 minutes to hours; recall that 60 minutes make 1 hour
12 minutes to hour = 12/60 = 0.2hr
to convert 4224 feet to miles; recall 5280 feet is equivalent to 1 mile
4224 feet to miles = 4224/5280 = 0.8 miles
∴ rate = 0.8 / 0.2
rate = 4 miles per hour
the constant rate in miles per hour = 4 miles/hour
Gravity holds everything in the galaxy together.
Let's use Newton's Law of Second Motion: F=ma. When no other direct force is acting on the system, the acceleration is due to the gravity. The modified equation becomes: F = mg. So, yes, you need to take into account the gravitational accelerations in the moon and on Earth.
g,moon = 1.622 m/s²
g,Earth = 9.81 m/s²
The net force is the tension of the string:
F,Earth - F,moon = Tension
Tension = (1/1000 kg)(9.81 m/s²) - (1/1000 kg)(1.622 m/s²)
Tension = 8.188×10⁻³ N
To convert, 1 pound force is equal to 4.45 Newtons:
Tension = 8.188×10⁻³ N * 1 lbf/4.45 N
Tension = 1.84×10⁻³ lbf