1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadya [2.5K]
2 years ago
7

How much thermal energy is required to raise the temperature of a 55-g glass ball by 15 °C?

Physics
1 answer:
Pavlova-9 [17]2 years ago
7 0

Answer:

Q = C M (T2 - T1)   heat required to raise temperature of Mass M

Q = .16 cal /(gm * deg C) * 55 g * 15 deg C

Q = 132 cal

You might be interested in
Which option lists a form of kinetic energy followed by a form of potential
Artemon [7]

Answer:

D. Sound Energy, Magnetic energy

Explanation:

Sound energy is in motion, and Magnetic energy is about to be in motion.

6 0
3 years ago
How did astronomers precisely determine the length of an Astronomical Unit in the 1960s?
zaharov [31]

Answer:

Use of telemetry and radar astronomy

Explanation:

An astronomical Unit (AU) is a unit of measuring distances in outer space, which is based on the approximate distance between the earth and the Sun.

After several years of trying to approximate the distance between the Sun and the Earth using several methods based on geometry and some other calculations, advancements in technology made available the presence of special motoring equipment, which can be placed in outer space to remotely monitor and measure the position of the sun.

The use of direct radar measurements to the sun (radar astronomy) have also made the determination of the AU more accurate.

A standard radar pulse of known speed is sent to the Sun, and the time with which it takes to return is measured,  once this is recorded, the distance between the Earth and the Sun can be calculated using

distance = speed X time.

However, most of these means have to be corrected for parallax errors

5 0
2 years ago
An athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 60 cm long and has a mass of 3.8 kg, with the center of
Serggg [28]

Answer:

(a) τ = 26.58 Nm

(b) τ = 18.79 Nm

Explanation:

(a)

First we find the torque due to the ball in hand:

τ₁ = F₁d₁

where,

τ₁ = Torque due to ball in hand = ?

F₁ = Force due to ball in hand = m₁g = (3 kg)(9.8 m/s²) = 29.4 N

d₁ = perpendicular distance between ball and shoulder = 60 cm = 0.6 m

τ₁ = (29.4 N)(0.6 m)

τ₁ = 17.64 Nm

Now, we calculate the torque due to the his arm:

τ₁ = F₁d₁

where,

τ₂ = Torque due to arm = ?

F₂ = Force due to arm = m₂g = (3.8 kg)(9.8 m/s²) = 37.24 N

d₂ = perpendicular distance between center of mass and shoulder = 40% of 60 cm = (0.4)(60 cm) = 24 cm = 0.24 m

τ₂ = (37.24 N)(0.24 m)

τ₂ = 8.94 Nm

Since, both torques have same direction. Therefore, total torque will be:

τ = τ₁ + τ₂

τ = 17.64 Nm + 8.94 Nm

<u>τ = 26.58 Nm</u>

<u></u>

(b)

Now, the arm is at 45° below horizontal line.

First we find the torque due to the ball in hand:

τ₁ = F₁d₁

where,

τ₁ = Torque due to ball in hand = ?

F₁ = Force due to ball in hand = m₁g = (3 kg)(9.8 m/s²) = 29.4 N

42.42 cm = 0.4242 m

τ₁ = (29.4 N)(0.4242 m)

τ₁ = 12.47 Nm

Now, we calculate the torque due to the his arm:

τ₁ = F₁d₁

where,

τ₂ = Torque due to arm = ?

F₂ = Force due to arm = m₂g = (3.8 kg)(9.8 m/s²) = 37.24 N

d₂ = perpendicular distance between center of mass and shoulder = 40% of (60 cm)(Cos 45°) = (0.4)(42.42 cm) = 16.96 cm = 0.1696 m

τ₂ = (37.24 N)(0.1696 m)

τ₂ = 6.32 Nm

Since, both torques have same direction. Therefore, total torque will be:

τ = τ₁ + τ₂

τ = 12.47 Nm + 6.32 Nm

<u>τ = 18.79 Nm</u>

3 0
2 years ago
PLEASE HELP ME IM TIMED
Novosadov [1.4K]
Yeah it’s the mantle
6 0
3 years ago
The AC voltage source is connected to an inductor and a resistor in series. If the frequency of the source is increased the curr
DaniilM [7]

Answer:

If the frequency of the source is increased the current in the circuit will decrease.

Explanation:

The current through the circuit is given as;

I = \frac{V}{Z}

Where;

V is the voltage in the AC circuit

Z is the impedance

Z = \sqrt{R^2 + X_L^2}

Where;

R is the resistance

X_L is the inductive reactance

X_L = ωL = 2πfL

where;

L is the inductance

f is the frequency of the source

Finally, the current in the circuit is given as;

I = \frac{V}{\sqrt{R^2 + (2\pi fL)^2} }

From the equation above, an increase in frequency (f) will cause a decrease in current (I).

Therefore, If the frequency of the source is increased the current in the circuit will decrease.

5 0
3 years ago
Other questions:
  • Can someone help me?!!!!!
    14·1 answer
  • The flash unit in a camera uses a 3.0 V battery to charge acapacitor. The capacitor is then discharged through a flashlamp.The d
    9·1 answer
  • Why do the plants at the bottom of a pond grow better than plant on the bottom of a lake
    5·1 answer
  • Four wires meet at a junction. In two of the wires, currents and enter the junction. In one of the wires, current leaves the jun
    15·1 answer
  • A positive charge, q1, of 5 µC is 3 × 10–2 m west of a positive charge, q2, of 2 µC. What is the magnitude and direction of the
    7·1 answer
  • Isaac drops a rubber ball drom height of 2.0m and it bounces to a height of 1.5m. a) What fraction of it's initial energy is los
    5·1 answer
  • An ant moves at 5 cm/s. It takes her 2 minutes to cross a road. How wide is the road?
    11·1 answer
  • ________ have an electrical charge of +1, while __________ have an electrical charge of -1. A. Electrons, protons B. Protons, el
    14·1 answer
  • What rapid changes to earths surface are caused by shifting plates
    7·1 answer
  • A rock is pulled back in a slingshot as shown in the diagram below. The elastic on the slingshot is displaced 0.2 meters from it
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!