Here's the equation you use: Density = mass/volume
1) 5.2g/cm^3 = m/3.7cm^3
2) m = 5.2g/cm^3 x 3.7cm^3
3) m = 19.24g
You can check the answer by plugging it in
19.24g/3.7cm^3
= 5.2g/cm^3
0.120L + 2.345L = 2.465L = 4 significant figures in the answer
Answer:
Mass remains constant but weight reduces
Explanation:
Mass is the amount of matter in an object so whether on moon or any other planet, it does not change despite the changes in acceleration.
Weight is a product of mass and acceleration due to gravity, expressed as W=mg where m is the mass, W is weight and g is acceleration. From the above formula, it is evident that when you decrease g, then W also decreases while m is constant. Similarly, when m is constant and g is increased then W also increases.
Therefore, for this case, since g decreases, the weight decreases but mass remains constant.
A coil of insulated wire around an iron core