To calculate the initial velocity of the bike, we use the following equation
.
or

Here, u is initial velocity, v is final velocity, t is the time and d is the distance covered by bike.
Given,
,
and
.
Substituting these values in above equation, we get
.
Thus, the initial velocity of the bike is 1.2 m/s.
Answer:
The answer will be <em>D</em>
Explanation:
I choose answer <em>C</em> and got it wrong on the test. Also Liquid atoms vibrate fast and slide past each other. what answer <em>C </em>shows is a gas.
Answer:
Explanation:
To solve this problem we use the Hooke's Law:
(1)
F is the Force needed to expand or compress the spring by a distance Δx.
The spring stretches 0.2cm per Newton, in other words:
1N=k*0.2cm ⇒ k=1N/0.2cm=5N/cm
The force applied is due to the weight

We replace in (1):
We solve the equation for m:
1200
-------=171 miles per hour
7