Answer #1 is "there is 2.5 grams of solute in every 100 g of solution."
We calculate for 2.5% by mass solution by dividing the mass of the solute by the mass of the solution and then multiply by 100.
Answer #2 is "that mass ratio would be 2.5/100 or 2.5 grams of solute/100 grams of solution."
We weigh out 2.5 grams of solute and then add 97.5 grams of solvent to make a total of 100 gram solution, that is,
mass of solute / mass of solution = 2.5g solute / (2.5g solute + 97.5g solvent)
= 2.5g solute / 100g solution
Answer#3 is "a solution mass of 1 kg is 10 times greater than 100 g, thus one kilogram (1 kg) of a 2.5% ki solution would contain 25 grams of ki."
We multiply 10 to each mass so that 100 grams becomes 1000grams since 1000 grams is equal to 1 kg:
mass of solute / mass of solution = 2.5g*10/[(2.5g*10) + (97.5g*10)]
= 25g solute/(25g solute + 975g solvent)
= 25g solute/1000g solution
= 25g solute/1kg solution
Answer:
[NaOH} = 0.4 M
Explanation:
In a reaction of neutralization, we determine the equivalence point of the titration. In this case, we have a strong base and a strong acid.
(H₂SO₄, is considered strong, but the first deprotonation is weak)
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
As we have 2 protons in the acid, we need 2 OH⁻ from the base to form 2 molecules of water.
In the equivalence point we know mmoles of base = mmoles of acid
Let's finish the excersise with the formula
25 mL . M NaOH = 28.2 mL . 0.355M
M NaOH = (28.2 mL . 0.355M) / 25 mL → 0.400
The answer is D: Saturated.
A saturated solution is one in which the exact maximum amount of solute has been dissolved. So, new solute will not dissolve in the solution. In contrast, an unsaturated solution can hold more solute, so if that option were correct, the crystal would have dissolved.
The other two terms are a bit more complicated. A supersaturated solution is one holding an amount of solute above the sustainable limit. Because of that, when more solute is added, the solution will immediately adjust, and some solute will come out of solution in a precipitate. Because the crystal isn't growing, we can eliminate this option.
A concentrated solution is one holding a relatively large amount of solute. However, you can have concentrated solutions that are saturated and unconcentrated (the word for this is dilute) solutions that aren't saturated. Therefore, we can say that because the crystal doesn't dissolve, this solution is saturated, but we can't say with certainty that it is concentrated.
Because the first three options are invalid, as described above, while the scenario does describe a saturated solution, D is the correct answer.
The most abundant carbon isotope is carbon-12.
The relative atomic mass of carbon is 12.011, which is extremely close to 12.0. This means that the masses C-13, and C-14 are practically negligible when contributing to the relative atomic mass of carbon.
the C-12 isotope makes up 98.9% of carbon atoms, C-13 makes up 1.1% of carbon atoms, and C-14 makes up just a trace of carbon atoms as they are found in nature.
The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Given data :
mass of aspirin = 640 mg = 0.640 g
volume of water = 10 ounces = 0.295735 L
molar mass of aspirin = 180.16 g/mol
moles of aspirin = mass / molar mass = 0.00355 mol
<h3>Determine the pH of the solution </h3>
First step : <u>calculate the concentration of aspirin</u>
= moles of Aspirin / volume of water
= 0.00355 / 0.295735
= 0.012 M
Given that pKa of Aspirin = 3.5
pKa = -logKa
therefore ; Ka =
= 
From the Ice table
=
=
given that the value of Ka is small we will ignore -x
x² =
x =
Therefore
[ H⁺ ] =
given that
pH = - Log [ H⁺ ]
= - ( -3 + log 1.948 )
= 2.71 ≈ 2.7
Hence we can conclude that The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Learn more about Aspirin : brainly.com/question/2070753