Answer:
b. 485 kPa
Explanation:
Gay-Lussac's law express that the pressure of a gas under constant volume is directly proportional to the absolute temperature. The equation is:
P1T2 = P2T1
<em>P is pressure and T absolute temperature of 1, initial state and 2, final state of the gas</em>
<em>Where P1 = 74psi</em>
<em>T2 = 20°C + 273.15 = 293.15K</em>
<em>P2 = ?</em>
<em>T1 = (95°F -32) * 5/9 + 273.15 = 308.15K</em>
<em />
Replacing:
74psi*293.15K = P2*308.15K
70.4psi
In kPa:
70.4psi * (6.895kPa / 1psi) =
<h3>b. 485 kPa
</h3>
Answer:
D) With an increase in altitude, atmospheric pressure increases as well.
Explanation:
Generally when altitude increases, the value of pressure decreases. This shows that pressure is inversely proportional to altitude. For example, the higher the altitude, the lower the pressure and vice versa. At very high altitude, the number of molecules of air are smaller than the number of moles of air at very low altitude. Thus, the higher the altitude, the lower the atmospheric pressure and the lower the altitude, the higher the atmospheric pressure. Therefore, option (D) is false.
D the chemical energy in a batery changes to electrical when its used
Since water is already at 100<span>°C all the energy is used to evaporate it.
Now we can calculate how many </span>mols of water are evaporated with 820kJ.

We calculated that we got 20 mols of water evaporated. Now, all we have to do is find how many grams is a mol of water. Molar mass of water is <span>20.16 g/mol.
</span>The final answer is: