Mold
Explanation:
A mold is a cavity that is left behind in the rock after an organism hard part has been dissolved. These are important fossils that useful in relative dating.
- Some hard parts of organism are preserved in form of molds in soft sediments.
- The outline and important details of the hard part is preserved when the mold dissolves away.
- Fossil molds are representative on the internal outline of the hard parts of organisms.
- They are usually recognized as a part of body fossil in a section.
learn more:
Fossils brainly.com/question/7382392
#learnwithBrainly
Electromagnet is in form of solenoid
and the magnetic field due to solenoid is given as

here
i = current in the loop
so when we increase the current in electromagnet the magnetic field of the solenoid will increase
this will increase the strength of the electromagnet
so the answer would be
<em>INCREASE</em>
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!
One does not simply should you do you should
Answer:
The correct one is that the force on B is half of the force on A
Explanation:
Because radius for the inside of the curve is half the radius for the outside and Car A travels on the inside while car B, travels at equal speed on the outside of the curve. Thus force on B will be half on A