Answer:
It is about 490 Newtons. 490.3325 to be exact
Explanation:
Pls mark as the Brainliest answer. Thank You very much, enjoy your day
Answer:
A mercury barometer is a device use to measure stomspheric pressure and is constructed as following:
- A mercury barometer requires a tube which has one close end, and one open end.
- Tube is placed upside down in a beaker in such a way so that one end open in the beaker and the other remain outside of the beaker.
- The barometric liquid (mercury) is then filled in the tube by pouring mercury liquid in the beaker.
The position of tube creates vacuum between the closed end of the tube and liquid surface and the Mercury has high density that is why used as the liquid to measure pressure.
Macromolecule polymers are assembled by the connecting of monomers. An -OH group is detached from one monomer and a hydrogen atom is detached from an additional in a procedure named dehydration synthesis in the monomers bond. For every subunit supplementary to a macromolecule in which one water molecule is detached. Macromolecule polymers are broken down by breaking bonds among subunits. This procedure is named hydrolysis and is the opposite of dehydration. During hydrolysis the hydrogen atom is supplementary to one monomer and a hydroxyl cluster to the other and by breaking the covalent bond in the middle of the monomers.
The easiest, non-technical way to think about it is like this:
-- A scalar is a quantity that has a size but no direction.
Those include temperature, speed, cost, volume, distance, etc.
One number is all there is to know about it, and there's no way you can
add more of the same stuff to it that would cancel both of them out.
-- A vector is a quantity that has a size and also has a direction.
Those include force, displacement, velocity, acceleration, etc.
It takes more than one number to completely describe one of these.
Also, if you combine two of the same vector quantity in different ways,
you can get different results, and they can even cancel each other out.
Here are some examples. Notice that in each of these examples,
every speed has a direction that goes along with it. This turns the
scalar speed into a vector velocity.
If you're walking inside a bus, and the bus is driving along the road,
then your velocity along the road is the sum of your walking velocity
inside the bus plus the velocity of the bus along the road.
-- If you're walking north up the middle of the bus at 2 miles per hour
and the bus is driving north along the road at 20 miles per hour, then
your velocity along the road is 22 miles per hour north.
-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is driving north along the road at 5 miles per hour, then your
velocity along the road is 3 miles per hour north.
-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is just barely rolling north along the road at 2 miles per hour,
then your velocity along the road is zero.
-- If you're in a big railroad flat-car that's rolling north along the track
at 2 miles per hour, and you walk across the flat-car towards the east
at 2 miles per hour, then your velocity along the ground is 2.818 miles
per hour toward the northeast.