this can be solve using the formala of free fall
t = sqrt( 2y/ g)
where t is the time of fall
y is the height
g is the acceleration due to gravity
48.4 s = sqrt (2 (1.10e+02 m)/ g)
G = 0.0930 m/s2
The velocity at impact
V = sqrt(2gy)
= sqrt( 2 ( 0.0930 m/s2)( 1.10e+02 m)
V = 4.523 m/s
<span> </span>
Answer:
I = 18 x 10⁻⁹ A = 18 nA
Explanation:
The current is defined as the flow of charge per unit time. Therefore,
I = q/t
where,
I = Average Current passing through nerve cell
q = Total flow of charges through nerve cell
t = time period of flow of charges
Here, in our case:
I = ?
q = (9 pC)(1 x 10⁻¹² C/1 pC) = 9 x 10⁻¹² C
t = (0.5 ms)(1 x 10⁻³ s/1 ms) = 5 x 10⁻⁴ s
Therefore,
I = (9 x 10⁻¹² C)/(5 x 10⁻⁴ s)
<u>I = 18 x 10⁻⁹ A = 18 nA</u>
Mental and non mental, an ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal.
Answer:
For Parent #1 missing box it's t and for Parent #2 missing box is t