<span>t^2 = 1/4.9 </span>
<span>t = 0.45 sec
answer:</span><span>1 - 4.9t^2 = 0 </span>
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.

- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1
Answer:
2.When they reach the bottom of the fall
Explanation:
The potential energy of the waterfall is maximum at the maximum height and decreases with decrease in height. Based on the law of conservation of mechanical energy, as the potential energy of the water fall is decreasing with decrease in height of the fall, its kinetic energy will be increasing and the kinetic energy will be maximum at zero height (bottom of the fall).
Thus, the correct option is "2" When they reach the bottom of the fall
Answer:
7.2g
Explanation:
From the expression of latent heat of steam, we have
Heat supplied by steam = Heat gain water + Heat gain by calorimeter
mathematically,
+
=
+
L=specific latent heat of water(steam)=2268J/g
=specific heat capacity=4.2J/gK
=specific heat capacity of calorimeter =0.9J/gk
=280g
=38g
α=change in temperature
=(40-25)=15
=(40-25)=15
=(100-40)=60
Note: the temperature of the calorimeter is the temperature of it content.
From the equation, we can make
the subject of formula

Hence

Hence the amount of steam needed is 7.2g
When I went through with the math, the answer I came upon was:
<span>6.67 X 10^14 </span>
<span>Here is how I did it: First of all we need to know the equation. </span>
<span>c=nu X lamda </span>
<span>(speed of light) = (frequency)(wavelength) </span>
<span>(3.0 X 10^8 m/s) = (frequency)(450nm) </span>
<span>We want the answer in meters so we need to convert 450nm to meters. </span>
<span>450nm= 4.5 X 10^ -7 m </span>
<span>(3.0 X 10^8 m/s) = (frequency)(4.5 X 10^ -7 m) </span>
<span>Divide the speed of light by the wavelength. </span>
<span>(3.0 X 10^8m/s) / (4.5 X 10^ -7m) =6.67 X 10^ 14 per second or s- </span>
<span>Answer: 6.67 X 10^14 s- hope this helps</span>