Answer:
You first need to construct a balanced chemical equation to describe the reaction:
KOH + HNO3 ---------> KNO3 + H2O
Work out the no. moles of HNO3 being neutralized:
Moles = Volume x Concentration = (25/1000) x 0.0150 = 0.000375 moles
From the balanced equation the molar ratio of KOH to HNO3 is 1:1 so you also need 0.000375 moles of KOH to neutralise the nitric acid
Now you can work out the volume of KOH required:
Volume = Moles/Concentration = (0.000375)/0.05 = 0.0075 dm^3 = 7.5 cm^3
Answer:
D) cooling of the reaction mixture
Explanation:
Increase in temperature speedens the rate of a chemical reaction
Number of moles of oxygen = x
number of moles of nitrogen = y
x = 2y
initial pressure, p1 = 0.8 atm
final pressure, p2 = 1.10 atm
At constant volume and temperature p1 / n1 = p2 / n2
=> p1 / p2 = n1 / n2
n1 = x + y = 2y + y = 3y
n2 = 0.2 + 3y
=> p1 / p2 = 3y / (0.2 + 3y)
=> 0.8 / 1.10 = 3y / (0.2 + 3y)
=> 0.8 (0.2 + 3y) = 1.10 (3y)
0.16 + 2.4y = 3.3y
=> 3.3y - 2.4y = 0.16
=> 0.9y = 0.16
=> y = 0.16 / 0.9
=. x = 2*0.16/0.9 = 0.356
Answer: 0.356 moles O2