Assuming that the ammonium sulfide formula is (NH4)2S then you can see that there are 2 nitrogen, 8 hydrogen and 2 sulfur atoms for every ammonium sulfide. If the amount of ammonium sulfide is 8.9 moles, then the number of hydrogen atoms should be: 8/1 * 8.9 mol= 71.2 moles
for it to be balanced in this case would be " <em>4</em> C6H6 + <em>6</em> CI2 = <em>3</em> C6H5CI + <em>9</em> HCI" therefore it's be a <u>Double Replacement</u>
Answer:
V = 0.0327 L.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the liters of C3H6O by the definition of density. We can tell the density of this substance as that of acetone (0.784 g/mL) and therefore calculate the liters as shown below:

Regards!
It would be 35.8 Calories or calories. Not sure about that part. Hope this helps though.
M=11.20 g
m(H₂)=0.6854 g
M(H₂)=2.016 g/mol
M(Mg)=24.305 g/mol
M(Zn)=65.39 g/mol
w-?
m(Mg)=wm
m(Zn)=(1-w)m
Zn + 2HCl = ZnCl₂ + H₂
m₁(H₂)=M(H₂)m(Zn)/M(Zn)=M(H₂)(1-w)m/M(Zn)
Mg + 2HCl = MgCl₂ + H₂
m₂(H₂)=M(H₂)m(Mg)/M(Mg)=M(H₂)wm/M(Mg)
m(H₂)=m₁(H₂)+m₂(H₂)
m(H₂)=M(H₂)(1-w)m/M(Zn)+M(H₂)wm/M(Mg)=M(H₂)m{(1-w)/M(Zn)+w/M(Mg)}
m(H₂)=M(H₂)m{(1-w)/M(Zn)+w/M(Mg)}
(1-w)/M(Zn)+w/M(Mg)=m(H₂)/{M(H₂)m}
1/M(Zn)-w/M(Zn)+w/M(Mg)=m(H₂)/{M(H₂)m}
w(1/M(Mg)-1/M(Zn))=m(H₂)/{M(H₂)m}-1/M(Zn)
w=[m(H₂)/{M(H₂)m}-1/M(Zn)]/(1/M(Mg)-1/M(Zn))
w=0.583 (58.3%)