Answer:
Atomic number 26,atomic mass 26+30=56 dalton and net charge is 3+
Explanation:
The total number of proton present in an atom is known as the atomic number of that atom.From that point of view the atomic number of iron ion is 26.
The total number proton and neutrons present in the nucleus of an atom or ion is termed as atomic mass.From that point of view the the atomic mass of iron ion is 26+30=56 dalton
According to the given question iron ion contain 3 more protons than electrons as a result the iron ion will contain 3 unit positive charge.
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
<h3>What is the boiling-point elevation?</h3>
Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.
- Step 1: Calculate the molality of the solution.
We will use the definition of molality.
b = mass solute / molar mass solute × kg solvent
b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m
- Step 2: Calculate the boiling-point elevation.
We will use the following expression.
ΔT = Kb × m × i
ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C
where
- ΔT is the boiling-point elevation
- Kb is the ebullioscopic constant.
- b is the molality.
- i is the Van't Hoff factor (i = 2 for NaCl).
The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:
100 °C + 0.140 °C = 100.14 °C
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
Learn more about boiling-point elevation here: brainly.com/question/4206205
Al(NO3)3(aq) + 3NaOH(s) --> Al(OH)3 (s) + 3NaNO3 (aq)
The precipitate here is Al(OH)3 (s), since the solid reactant is the precipitate in the aqueous solution. Usually, it is okay to assume in basic chemistry that the transition metal is going to be part of the compound that is the precipitate, especially in an acidic salt and a strong base reaction that we have here.
Answer:
You manage to find a bottle of bromothymol blue and a few extra beakers. You take one of the empty beakers and add some of the first unlabeled solution and some indicator.
The color changes to yellow.
You then add some solution from the other unlabeled flask into this beaker and see the color change to blue.
What are the identities of each unlabeled solution?
Explanation:
Bromothymol blue is a dye and it is used as an indicator.
It is used as a pH indicator.
In acids, it becomes yellow n in color.
In bases, it turns blue.
You take one of the empty beakers and add some of the first unlabeled solution and some indicator. The color changes to yellow.
That means the unlabeled solution is an acid.
You then add some solution from the other unlabeled flask into this beaker and see the color change to blue.
It is a basic solution.
D.
Blue litmus paper turns red when placed in a base.